ПАСПОРТ

эталона сравнения ЭС-1.1-176-033-2019-Na₂CO₃

Наименование

Эталон сравнения карбоната натрия высокой чистоты

Назначение

Обеспечение организации и участия в ключевых, пилотных и дополнительных сличениях государственных эталонов. В комплексе с ГЭТ 176 может применяться для передачи единицы величины при проведении аттестации эталонов, испытаний стандартных образцов, аттестации референтных и первичных референтных методик измерений и при осуществлении других видов метрологического контроля.

Метрологические характеристики

Аттестованная характеристика	Аттестованное значение, %	Расширенная неопределённость аттестованного значения $U(k=2, P=0,95), \%$
Массовая доля карбоната натрия*	99,992	0,017
Массовая доля натрия**	43,377	0,001

^{* -} выражена как массовая доля оснований в пересчете на карбонат натрия, измерена на эталонной установке, реализующей метод кулонометрического титрования, входящей в состав ГЭТ 176;

** - массовая доля натрия вычислена исходя из результатов измерений массовой доли основного компонента по схеме «100 % минус сумма примесей» с внесением поправок на массовые доли катионов (Li⁺, Be²⁺, K⁺, Mg²⁺, Al³⁺, Ca²⁺, Zn²⁺, Cu²⁺, Sr²⁺, Cr³⁺, Fe³⁺, Mn²⁺, Ni²⁺, Co²⁺, VO²⁺) и анионов (SO_4^{2-} , PO_4^{3-} , Cl⁻, MoO₄²⁻), которые входят в состав ЭС, на основе уравнения электронейтральности с учетом необнаруженных примесей, принимая их массовую долю в расчетах, равной половине предела обнаружения. Измерения выполнены на эталонной установке, реализующей метод масс-спектрометрии с индуктивно-связанной плазмой, входящей в состав ГЭТ 176.

Дата очередного контроля метрологических характеристик 14 мая 2024 г.

Технические характеристики

Материалом ЭС является реактив карбоната натрия с массовой долей основного компонента не менее 99,8 %, массой 500 г.

Утверждение о прослеживаемости

Прослеживаемость аттестованного значения обеспечена методом прямых измерений на Государственном первичном эталоне единиц массовой (молярной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе кулонометрии ГЭТ 176 с использованием прямого и косвенного способов оценки массовой доли основного компонента в соответствии с МИ 3560-2016 «ГСИ. Оценка неопределенности измерений массовой доли основного компонента в неорганических веществах».

Дополнительные сведения

При измерениях косвенным способом получены следующие оценки для примесей (таблица 1).

Таблица 1 – Сведения о суммарном содержании примесей в ЭС

Количество определяемых элементов	70
Количество обнаруженных элементов	19
Количество пределов обнаружения	51
Сумма обнаруженных элементов ($\sum x_i$), %	0,0043
Сумма пределов обнаружения ($\sum y_j$), %	0,0007

Значения массовых долей обнаруженных примесей приведены в таблице 2.

Таблица 2 – Сведения о содержании обнаруженных примесей в ЭС

Элемент	Метод*	Результат измерения массовой доли элемента, %	Расширенная неопределенность $U_{(k=2,P=0,95)},\%$	Относительная расширенная неопределенность $U_{(k=2, P=0,95)}$, %
Li	ICP MS	3,99E-07	1,E-07	30
Be	ICP MS	4,95E-08	1,E-08	30
Mg	ICP MS	4,60E-05	1,E-05	30
Al	ICP MS	5,38E-06	2,E-06	30
P	ICP MS	1,50E-04	1,E-04	30
K	ICP MS	6,39E-04	2,E-04	30
Ca	ICP MS	2,64E-03	8,E-04	30
V	ICP MS	2,92E-06	1,E-06	30
Cr	ICP MS	1,04E-05	3,E-06	30
Mn	ICP MS	3,61E-05	1,E-05	30
Fe	ICP MS	4,43E-04	1,E-04	30
Co	ICP MS	2,18E-06	7,E-07	30
Ni	ICP MS	5,74E-06	2,E-06	30
Cu	ICP MS	2,57E-05	8,E-06	30
Zn	ICP MS	7,05E-06	2,E-06	30
Sr	ICP MS	1,92E-04	6,E-05	30
Mo	ICP MS	6,11E-06	3,E-06	30

^{*} ICP MS – масс-спектрометрия с индуктивно-связанной плазмой.

Условия хранения

ЭС хранится в стеклянной банке при температуре (25 ± 10) °С.

Подготовка к применению

Из банки, в которой хранится ЭС состава карбоната натрия, отсыпать материал ЭС в чистый сухой стаканчик для взвешивания (по ГОСТ 25336-82) и закрыть банку крышкой. Для предотвращения возможности загрязнения основной массы ЭС следует брать навески только из стаканчика для взвешивания. Остаток материала ЭС во флакон не ссыпать.

Отобранную пробу высушивают в течение 2 часов при температуре (270±2) °C, затем охлаждают в эксикаторе до комнатной температуры.

Пробу взвешивают на весах I (специального) класса точности согласно эксплуатационной документации.

Дата регистрации

14 мая 2019 г.

Изготовитель

ФГУП ""УНИИМ", 620000, г. Екатеринбург, ул. Красноармейская, 4, тел. +7 343 217 29 25, uniim@uniim.ru

Ответственный за хранение ЭС		Мигаль П.В.
Ученый хранитель ГЭТ 176-2017		Собина А.В.
Зам. директора ФГУП «УНИИМ»		Казанцев В.В.
-	МП	